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THE FUTURE ROLE OF A CROP MODEL IN
LARGE AREA YIELD ESTIMATING
G. F. Arkin, C. L. Wiegand and H. Huddleston

Crop growth simulation models that consider the soil-plant-atmospher
continuum have only recently been introduced as research tools.v The
incentive to develop such models resulted from the successful modeling
of photosynthesis toward the end of the 1960's. Croh'growth simulation
models for corn, cotton, alfalfa, short-grass, barley, gnd wheat followed
in the early 1970's (Table 1). As illustrated, crop growth modeling is
in its infancy. Crop growth models are primarily research tools; few,
if any, are being used in management decision making. However, accurate

crop growth modeling and yield forecasting could enable improvedfmanage—

ment decisions. Preplant and crop season weather and growing conditions
can be useful in determining optimum planting date, matching crop to
land productivity, optimizing fertilizer application rates, scheduling
jrrigations, planning insect control programs, and estimating harvegt
date and crop storage and handling requirements, both nationally and
internationally.

Crop g}owth models may be useful to economists in cost benefit
analyses. Growth models permit parametric analysis of cost returns on
the production inputs of various management alternatives. Definition
of genetic characteristics of particular crops may ‘enable plant breeders
to use crop growth models to estimate growth and production of various
genetic materials for different climatic and physiographic conditions
and select materials suited to a specific locéle. The potential use

of these models as management and research tools stimulated building the
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Tablebl. Plant or Crop Simulation Models in the Literaturegl

CROP AUTHOR(S) . YEAR

Alfalfa Miles, Bula, Holt, Schreiber, ét al. 1973

Holt, Bula, Miles, Schrefber, et al. 1975

Barley Kallis and Tooming 1974
Corn ‘Splinter 1973, 1974

Russo and Knapp 1975

Baker and Horrocks 1976

- Lemon, Stewart, and Shawcroft 1971

Cotton Baker, Hesketh, and Duncan 1972

Stapleton, Buxton, Watson, Molting,

et al. 1973

__McKinion, Jones, and Hesketh 1975

chgﬁggass Connor, Brown, and Trlica 1974

Sorghum Arkin, Vanderlip, and Ritchie 1976

Vanderlip and Arkin 1976

Soybeans Curry, Baker, and Streeter 1975

Sugar beets Fick 1971

Fick, Loomis, and Williams 1975

Wheat Rickman, Ramig, and Allmaras 1975

Chin Choy, Jose, and Stone 1975

Colwell and Suits 1975

EarthSat 1976

3/ W. W. Hildreth, Lockheed Elec., Tech. Memo.
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grain sorghum crop growth simulation model.

Grain sorghum is exceeded only by wheat, rice, corn and barley in
acreage of world crops. It is grown on all six continents in regions
where the average summer temperature exceeds‘20°c and the frost-frée
season is 125 days or more. Because graih sorghum can tolerate either
arid or wet climates, enabling production on marginal lands, its impor-
tance as a food énd feed source is growing annually. Increased world-
wide annual grain sorghum production and gfain yields can also be
attributed to the development of higher yielding varieties with insect
and disease resistance, and to improved management practices.

Grain sorghum, 1ike corn and other grain crops, is determinate and
produces a genetically predétermined number of leaves on a given tiller.
Grain sorghum has a Cy-dicarboxylic acid pathway of'photosynthesis which
is believed to be an adaptation for efficieht, rapid carbon fixation in
envirohments where water 1imits plant growth. Although usually grown as
an annual, sorghum will grow replacement tillers if the primary tiller
is removed. Thus, certain cultivars have multiple uses for grain and
forage. Grain sorghum growth characteristics differ 1ittle over large
regional areas, as a result of the relative insensitivity to photoperiod
and the narrow genetic base among many varieties within a particular
maturity class. These attributes simplify modeling sorghum growth and
should enable the grain sorghum model described herein to be used over

large areas with 1ittle alteration.
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THE MODEL

Daily growth and development of an‘averagé grain sorghum plant in a
typical field stand was calculated with this model. The appearance of
leaves, their growth rate, and thé timing of these events are growth
characteristics simulated in the mode}. Light interception, photosyn-
thesis, respiration and water use were modeled independently and used as
submodels in the growth model. Daily dry matier accumulation is parti-
tioned to the appropriate plant organs, depending on the stage of plant
development. The cumulative dry weight for a crop is the product of the
plant population and the weight of the modeled "average" plant. Likewise
crbp yield is the product of the plant population and the weight of the
modeled average plant grain weight. Most of the equations deséribing
these processes are empirically derived from field measurements.

Input data required for the sorghum gfowth simulation model are
given in Table 2. The model operates on a daily basis, and therefore
only daily climatic inputs are required. Other jnputs are initialized

at the outset of the modeling run. A generalized flow diagram is given

. R M(SW?

SEEDLING, EMERGENCE

Seeds will imbibe water at very low soil water contents. Therefore;
calculated seedling emergence depends primarily on temperature. Mean
air temperature is used to compute days to emergence. The threshold
soil temperature, below which seedlings will not emerge, is approximately
10°C. Above this threshold sorghum seedlings will emerge when a pre-
determined number of heat units have accumulated, depending on sowing

depth.




Table 2. Input data required for sorghum growth simulation model.

Plant data ‘
Lexf number -- total number of- T‘eave‘se producedr

Leaf area -- maximum area of each individual Teaf, cm2

Planting data
Planting date
Plant population
Row width

Row direction
Climatic data (daily from planting fo'métdrity)q‘w‘
Maximum temperature, C | |
Minimum temperature, C
Solar radiation, langleys per day

Rainfall, cm

Location data
Extractable soil water capacity, cm
Initial extractab1e soil water content, cm

Latitude
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canopy is computed by using a modification of the Bouger-Lambert equation

(commonly referred to as Beer's Law).

POTENTIAL.NET PHOTOSYNTHESIS
Potential nét photosynthesis, defined as the net C0, fixed during
the daylight hours on a ground area basis for nonlimiting water and '
temperature conditions, is calculated using relationships developed
from data obtained from a canopy gas exchangelchamber and simultaneous

light interception measurements.

EVAPOTRANSPIRATION A
~ Potential evapotranspiration‘is calculated using a relationship
between net radiation, saturation vapor pressure, and relative_humidity.

Potential evapotranspiration, Egs s tomputed as:
E, = 1.28 DELTA/H, (DELTA + GAMMA)

where DELTA = slope of the saturation vapor pressure curve at mean air

temperature, GAMMA = constant of wet and dry bulb psychrometer équation,
and Ho = net radiation, cm H,0 (evaporation). - |

Evapotranspiration is calculated as the sum of transpiration and
soil evaporation. Transpiration, Ep, is dependent upon LAI and is

computed as:

Ep = 0.53 E, (LAI)]/2 for LAI < 3

except when soil moisture is limiting. Potential soil evaporation, Eos’




1|is calculated by:

3 Eos =_Eo if LAl < 0.5
4lor

= * 3
5 Ec's (D "os.) J (B+T) if LAL 2 0.5
6 _ '
7where D = DELTA/GAMMA and Hyg = net radiatfdn at soil surface. Soil
glevaporation is calculated from the potential and is dependent upon the

glcondition of the soil (soil moisture and stage of drying).

10
11 WATER AND TEMPERATURE‘STRESS
12 A serie$ of efficiency functions which reflect the effects of non-

18|optimum ambient fempératdre énd-soif water conditions on plant growth
14|are used in the model. Each efficienéy parameter is a dimensionless
15[coefficient with a value from 0 to 1.

16 The soil moisture level at which trénSpirdtion is reduced depends
17|on LAl and soil-water holding capacity. If extractable soil water falls
18/below this level, the coefficient of water stress becomes less than 1.
19|The water stress coefficient, Figuré 2, is used to reduce transpiration
20{and net photosynthesis.

21

29 Figure 2

23

11
24| Coefficient
of

25| water stress

26 0
757 1007
27 - Available Soil Water
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‘subtracting nighttime respiration losses. This expression for net

photosynthesis is based on the hypothesis that Timiting water and

Mean daily ambient- temperature is used to approximate the crop
temperature. Extremes of temperature constrain the photosynthetic rate.
A temperature stress coefficient, Figure 3, is used to reduce net

photosynthesis.

Figure 3

Coefficient
of
temperature
stress

- & W e oo

!
]
'
|
0 1 - L
5°C . 25°C 40°C 45°C
Mean Daily Temperature

NET PHOTOSYNTHESIS ,
Net photosynthesis is computed by multiplying potential photosyn-

thesis by the coefficients of water and temperature stress, and then

temperature conditions proportionate]y reduce photosynthetic rate
regardless of other 1imiting variables. Reductions in net photbsynthesis
becéuse of unévai1abi]ity of soil moisture, were considered to be pro-
portionate to the reduction in plant evaporation resulting from limited
water availability. The effect of plant temperature extremes is based
on an optimal temperature range between 25 and 40°C, and photosynthesis

completely inactive below 5 and above 45°C.
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' DRY MATTER
Net photosynthesis computed as just described is converted to

dnysmatter-using;the following relationship: ‘ }
=12 1
DM u:x mxp

where. DM:is-dry-matter, 12/44 is-the ratio of molecu]ar weights of C and
COZ respectively;.0.4 is the proportion of the plant dry matter that is
carbon; and p-is-net photosynthesis. - |

PHASIC DEVELOPMENT
Three stages are partic&lér]y important in determining what plant
parts are increasing in weight: growing point differentiation (GPD),
half bloom (HB), and physiological maturity (PM). Because leaf appearanceau

and expansion were simulated in the grain sorghum model, phasic develop-

ment was defined with respect to the appearance of leaves. For example,
6PD normally occurs about midway betweemr five leaves fully expanded and -
flag leaf visible in the whorl. The date GPD occurs was. defined as the
midpoint between the computed date that Teaf § (countfng—from the base) -
reaches maximum area and the computed date that the fTag Teaf emerges:

DRY MATTER PARTITIONING

Dry matter is empirically partitioned to the appropriate plant partg,
depending upon the development of the plant (Fig. 4). For example, the
plant makes much of its vegetative growth during the period from GPD to

HB. Early in that period dry matter is partitioned to leaves, roots and

27

culm. Leaves have first priority; the amount of dry matter production




Figure 4 .

STAGE OF DEVELOPMENT .

EMERGE . GPD " I/2 BLOOM . PM
|ooo [ 2 3 -4 5 B 7 8 S,:;:
LEAVES . Jouwm - CULM

IDRY MATTER
PARTITION (%)

DAYS AFTER EMERGENCE
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is partitioned to roots and culm in a 0.4:0.6 ratio, with at least 20%
of the daily‘dry matter production going to the roots. During the
remaining time until half bloom, dry matter is partitioned to Teaves,
roots, culm and head. Leaves again have first priority. Remaining dai1y‘
dry matter- production is partftfoned to the raots, culm azitt heat i the
proportions 0.20:0.45:0.35, respectively.

MODEL LIMITATIONS
Several aspects need further consideration. Timing of stages of

development and partitioning of dry weight to plant parts need to be

plant roots. Both water‘and'nitrogen stress can affect the rate of leaf
appearance, maturity, leaf senescence, and leaf area. Development of
these relationships for field-grown plants would result in improved
timing'and partitioning simulations. Including nitrogen nutrition in
the model would allow its use as a management factor in modeling and
would enable protein con;ent of the grain to be computed. Quantitative
relationshibs among limited available soil water and internode elongation
floral ﬁbortion, and uppernode branching are important in realistically
modeling sorghum crop growth. These morphological aspects, although not
considered here, can have an immense impact under certain conditions and
will need to be dealt with in the future. For the model to operate
correctly over a wide range of plant populations, tillering must be
accounted for. To adequately simulate yield, two major components of

yield must be modeled -- seed number and the rate of grain filling.
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FORECASTING CROP GRONTH AND YIELD

In general, regression models are being used to forecast yields.
Between-year regression models assume that;the current year is part of
a compbsite.popu1ation, as were the base period years which provide
expressions of yield as a function of meteorological variables. These
between-year models require historical yield.and weather data to develop
the regression equations. Within-year crop yield models, 1ike'the one
to be discussed, have the advantage of providing crop yield forecasts
without the dependence on a base period. Because of limited weathef and
yield data, a between-year model requires a minimum of‘five years 6f |
data collection before it can be 1mp1eménted. The neéessary data.are
often lacking for specific locales. The within-year model permits crop
development and yields to be projected from any point in the growing
season by using weather probabiiity data. The weather probabilities

are developed from historical weather records for many crop seasons. ~

‘Such data can describe the probability of specific weather events (i.e.,|

1, 5, 10 consecutive rainless days anytime during the growing seaéon).
In one study, crop growth and yield were simulated for 20 years
for six different levels of available soil water at the start of each
growing season; i.e., 120 seasons of simulated grain sorghum growth and
yield data were then avai1abie for use in the stochastic approach to
yield forecasting. The simulated data were used to develop a conditiona
probability forecasting technique. Cumulative distribution functions
(CDF's) conditioned on leaf area and available soil water were developed
with the simulated crop growth data for Temple, Texas, for five dates
during a growing season (0, 30, 45, 60 and 75 days after emergence (DAE)).

These CDF's were then used to forecast grain sorghum yields for a typica
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grain sorghum crop in Temple, Texas, during the 1974 growing season.

The climatological forecast sequence ié presented in Table 3. The
first forecgst was made at .0 DAE for LA of 0 cm? and ASW (available soil
water) > 9.0 cm. LA and ASW values were obtained from the model simula-
tion data for 1974. From the CDF's the probability was 60% thét thé
yleld would 1ie between 4600 and 7800 kg/ha. Similarly, mean yield and
the 60% probability yield range were forecast on the selected dates
throughout the growing season thfough 75 DAE, when the‘forecasted‘mean
value was 4392 kg/ha and the yield mode1ed using only the 1974 growing
season weather was 3822 kg/ha. Data in Table 3 illustrate that the
variance around thé.Mean remafned about the same for each forecast.
However, the yield associated with the 20 and 80% cumulative probability
and the mean value drew closer to more realistic values as the season
progressed until, at 75 DAE, the forecasted mean yield was essentially
the same as the measured yield (4398 kg/ha).

Because stages.of development, plant organ weights inc]udfng head
weight, and leaf number are calculated within the growth simulation mode]
it should be possible to measure these values in the field and use them
in making a forecast. As the crop deve]ops, new feedback data measured
in the field or measured via satellite and aircraft overflight would be
used in forecasts. With this method, the model could be started at any
time in the growing season, with measured data describing the state of
the crop to that point. Using generated weather data for the remainder
of the season, new yield probabilities can be calculated. This process
continues as the season progresses, continually updating or adjusting
the model with measured inputs and then calculating new yield probabili-

ties which should be more accurate and have less variance than forecasts




Table 3
FORECASTED, MODELED AND MEASURED GRAIN SORGHUM-/ YIELD - 1974
TEMPLE,. TEXAS
~ ~ FORECASTED FORECASTED

GROWTH LA . ASW RANGEt MEAN
DAE STAGEZ/ (cm2) (cm) (kg ha-) (kg ha"l)
0 -- 0 9.0 4600-7800 6214
30 3(6PD) 440 59,0 - 3400-7250 - 5580
45 4-5 >1750 >9.0 3700-7200 5441
60 6 (HB) >2650 <10.0 2700-6100 4406
75 7-8 >2490 <9.0 2800-6000 439
97 9 (PM) MEASURED YIELD 4398
97 9 (PM) ~ MODELED YIELD - B2

1/ Variety - Big Yellow - McGregor Seed Co.

2/ After Vanderlip (GPD - Growing Point Differentiatfon HB - Half Bloom,
, PM - Phys1o]ogica1 Maturity)

+ 60% Probability
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made earlier in the season. This approach enables forecasfs in a real-
time framework useful for real-time decision-making information for the
farmer or other user groups.

The feedback submodel for the growth simulation model was just

recently developed. A neither madet that car be usedr tor generate prob— |

able weather during the growing season will be used with the grain
sorghum mode1 to compute realistic yield probabilities.

A sample of the use of the feedback submodel is given in Table 4.
At four dates, ground truth measurements were uged to update the model
for grain sorghum growth simu]ation from the date of the feedback entry
to physiological maturity. | ' | A

On June 7, for example, the followingrground truth information was
fed back to the model: 14 Teaves full grown, LAI = 2, plant dry weight
= 20.05 grams, head dry weight = 3.69 grams. The model then accurately
simu1a£ed'both the total plant dry weight and the head dry weight and
compufed the date of physfo]ogica1 maturity within three days of the
observed event. This forecast was made one month before physiological

maturity and approximately two months before harvest. LAI was always

overestimated because the senescence submodel of the grain sorghum

simulation model is not responsive to limited soil water conditions.

THE HYBRID SPECTRAL-PHYSIOLOGICAL MODEL 7

The hybrid model combines the sorghum simulation model with spectral
models that use LANDSAT multispectral scanner (MSS) data or a combinatior
of LANDSAT and weather data for estimating plant growth parameters for

updating and adjusting model computations.

Dne of the major inputs and outputs of the sorghum simulation model

=



~ TABLE 4
BAKER . LD 1
TEMPLE, TEXAS
1976 | . .
GROUND T a—— 3311571 ———
TRUTH FEEDBACK 5-3 5-18 6-7 6-24
5-3 o
—F LEAVES FULL 8 4 g*
LAI 0.83 3.35 0.83*
PLANT DRY WT (GM) 2.36 16.16 2.36%
HEAD DRY WT (GM) 0.00 2,22 - 0.00*

5-18 o - '

~F LEAVES FULL 10 14 .14 " 10
LAI | 1.51 3.16 3.32  1.51*

PLANT DRY WT 6.03 29.94 1413 6.03*
HEAD DRY WT 0.00 7.05 - 1.57 0,00

6-7 o 3 o R

~F LEAVES FULL. 14 - 4 4 14%
LAI ‘ 2.00 3.05 3.15 2,00*
PLANT DRY WT 20.05 37.10.  20.41 20,05*
HEAD DRY WT 3.69 ; . 8.72  6.30 - 3.69*

6-24 ' o | :

Al 2,40 T 2.06 2.9 2,59 2.40%
PLANT DRY WT 44,92 | ~ 57.01 . 46.54 46,44 44.92*
HEAD DRY WT 21,27 B 2 3101 12,17 17.25 0 21.27

PHYS. MATURITY B |

'\ A 7-13  6-3 744 7-20 7-10 . 7-10
LAI 1.40 2,05 - 2.75  2.65 2,43 2.25
PLANT DRY WT 50.70 50.05 = . 66.52 - 69.40 50,04 56.99
HEAD DRY WT 35.70 31,93 - 43.92 - 44,3% 33,05 35.00

EMERGENCE 3-15 W | I 3-15% . 3-15% 3-15* 3-15%

ANTHESIS 67 . 510 . ¢ 62 :. 614 - &-7* 6-7*

f‘.}"g

* Feedback inputs

—
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is leaf area. Experience has shown that leaf area can be estimated from
satellite data. This information could be used as feedback to upgréde
the simu]ation model's prediction of crop condition or to override or
reinitialize the simulation model.

Apother-important aspect of this Simulation model is the require-
ment for plant bopu1ation input. If populations change for any reason
during the growing season (disease, hail, eté.), this information needs
to be updated in the model. Satellite data are a measure of character-
jstics associated with p1an£ population and could provide adjustments
that would improve the accuracy of the simulation model yield forecasts.
Although the satellite data are not a measure of plant population per Sse,
they respond to gfeen biomass variation due to stand and to green leaf |
area. The spectra] data characterize fields with information that is a
surrogate for plant population. Satellite-obtained estimates of LAI are
most u;eful for extending the simulation model to large geographical
areas and for documenting field-to-field variability. Ground verifica-
tion or feedback data for all fields in a state might be prohibitively
expensive.

The sorghum simulation model contains a soil water balance subroutiTe.
P]ant¥stress status is determined from available soil water in the pro-
file, which is computed daily. With thfs information plus information
on physiological development of the crop and yield probabilities,
information useful for on-farm management decision making can be dissem-
inated. These farm management advisories might range from selection of
appropriate plant populations or optimal planting date to the best time

to irrigate or the amount of water to use for irrigation.

The spectral relationships can help to identify whether optimum
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seeding rates are being used, to identify plant growth stresses, to
stratify production areas into subareas of similar soil type and farming
practices, to provide synoptic indications of available soil moisture

when such data are not avaflab]e from ground measurements, and to docu-

ment vegetation cover as it relates to soil erodibility by wind or water.

The interdependency of the: two modets and their~combined: output is-
j1lustrated in Table 5. Management decisions based en the output are -
also listed. ‘ '

High corre1ations between spectra] data and plant growth parameters
have been obtained (Tab]e 6) These high correlations between LANDSAT-
derived vegetation indices or d1rect d1g1ta1 data from LANDSAT 1nd1cate

that spectral data cou]d be used to est1mate plant cond1t1on parameters

in individual fields over large areas for feedback into the sorghum plant

growth model. Use of the simulation model, weather probabilities, and
the spectral data in a complementary manner should result in improved

knowledge of crop growing conditions and'resultant yie]d.

EXTENDING THE SINGLE-PLANT, SINGLE-FIELD MODEL
TO LARGE AREA FORECASTS

By simulating single-field growth and development in an adequate
sample of representative fields in a large area, one should be ab]e to
estimate plant growth and development in that area. The number of
fields (grid density) required for adequate coverage js critical. Model
input data requirements for simulation of growth and development at each|
field would not normally be available and would have to be extrapo1a£ed

from the existing meteorological network data. The jmpact that extra-

¢

polated input data may have has yet -to be assessed.




CROP DEVELOPMLNT STAGE

Table 5.

YIELD L IMITING FACTORS

SPECTRAL MODEL OQUTPUT

Simulation and Spectral Model Limitations, Outputs and Decision Options.

SIMULATION MODEL OUTPUT

Preplant

Available water

Surface temperature as
an indication of
adequacy for germina-
tion; moisture
conditions

TInitial Inputs:

¥
planting configuration|
plant population '
initial motsture '

MANAGEMEN C SIONS
Trrl
Fertilizer appllcauon
Aterating

rna ¢
Seeding n?ection
Tillage ‘;"

Planting

Available water

Bkgrd. (soil)

Drainage
Topography
variabtlit

Emergence

Available water
N avatlable
Leaf area index

nte Vs
non-tilled acreage

Herbicid
Varlety e, ]

Seeding rafe

te of emergenc
Available soil mter
Growth: leaf appearance,

Irrigati *’schdulln?
Sidedress L of fertilizer

Avg. weather to end Jeaf expansion
of season Dry matter: CO{. s
Avg. weather to end Partitioning: Teaf, stem,
of stage roots
Crop status
Growing Point Differentiation Available water Vigor {synoptic) Available soll water Irrigation $chadul{n
(GPD) N available Leaf area index Growth: leaf appearance, Sidedressip‘ gf fert?lizer
Leaf area index Crop cover leaf expansion
Avg. weather to end Green biomass Ory matter: coi. s
of season Crop 1.D. and hectarage Partitioning: Tleaf, stem
Avg. weather to end estimate updates roots, head
of stage Date of GPD
Crop status
RaYT-bYoom (HB) AvaiTable water Vigor (synoptic) AvaiTsble sof} waur Trrigation schﬁﬂﬁl‘
N avatlable Leaf area {ndex Dry matter: CO. Harvest, transportation,
Leaf area_index Crop cover Partitioning: ?eaf , Stem, stongc mﬁ prepara-
Avg. weather to end Green biomass ‘ . roots, heads tion
of season Crop 1.D. and hectarage Date of HB ’ i
Avg. weather to end estimate updates
of stage

Crop status

PhysioTlogical maturity (PM)

Storms, disease,

weathering of grain

vigor (synoptic)

Green leaf area duration

or senescence rate
Crop cover
Oiscrimination between

confuser crops

— Growth: leal appearance,

leaf oxpansion

Dry matter:

Partitioaing: 7e|ff stem,
roots, head

‘Date of PN

rarvest dags

Multiple cropp n?

Post-harvo;t Hage

Harvest, tran tation,
storage f!clr:hs



( Table 6. Simple Tinear correlation coefficients between eight vegetation
indices and ground truth and between individual LANDSAT digital
count and ground truth for the pooled data for 5/3, 5/21, 6/8,
and 6/26 from grain sorghum fields in Bell County, Texas .in 1976
(n = 25) (table from reference 9).

LANDSAT ~ =mmeee e Ground Truth Information--e-e- o

Vegetation Leaf | Plant Plant
Indicesgl Area Index BIOMASS Height Cover -
------------- Corre1ationrCoefficients, r---c------
TVI 0.836** .. . 0.744% 0.826** - 0.717%*
WIE 0.867%%  0.778%  0.861%%  0.763%*
RVI o -0.824%% 07220 0817%  -0.707%%
PVI 0.892%  0.792% 0.877% 0,786
PVI 6 | 0.916** 0.806%* 0.907**  0.830**
DVI 0.893** - - 0.791%. - 0.877* 0.785%*
SBI -0.44T%  -0.263 . -0.459%  -0.470%
GVI  0.893% ©0.800%  0.881%* | 0.795%%
LANDSAT T A — Ground Truth Information ——=—~-=-----a-
MSS o : ~ Plant Plant
Bands LAI BIOMASS Height Cover
MSS4 - 0.036 -0.142 0.061 _  0.130
MSS5 -0.389 o -0.447 -0.365 -0.288
MSS6 0.795%* 0.641%* 0.799%* 0.759%*
MSS7 0.839%* 0.690%** 0.837%* 0.770%*
* Statistically significant at the 0.05 probability level.

**  Statistically significant at the 0.01 probability level.

9/ Refer to transformed vegetation index, ratio vegetation index,
perpendicular vegetation index, difference vegetation index,
soil brightness index, and green vegetation index, respectively;
for details see references 8 and 9.
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_ A INPUT DATA
It hay be necessary to supplement satellite data with Tower altféude
aircraft imagery for areas where clouds e]iminafe most or al]lof the
satellite coverages during the growing season. However, the areal
covergge-limftations of aircraft and the difficulties in scheduling them :
for 1qw cloudiness déys are ehorﬁous and restrict their use in wide-area
coverage. -

‘The predictability of the satellite coverage schedule months in
advance, once it is successfully in orbit;nhas advaﬁtages in efficiently
deploying ground resources in operational systems. Data are collected
with the satellite system for the same time of day at each ground locatign
and with the same sensor system worldwide. Uniformity of the data sets
produced by this system simplify the data processing.

Aircraft scanners are available with a larger number of spectral
bands ihan are available on spacecraft systems. The Thematic Mapper
onboard the LANDSAT follow-on missions will help eliminate this disparity.
Since aircraft are much closer to the earth than orbiting satellites,
the data are of much higher resolution. If it is important to identify
p1antfngs as small as 1 hectare, then with current technology aircraft
data mustAbe used. But much of the production from such small plantings
is consumed in subsistence economies; high-quality synoptic imagés that
indicate the general growing conditions may be sufficient to indicate
production in such areas. |

The inputs from satellite and aircraft systems are about the same --
digital magnetic tapes and color or black-and-white images. Their

data processing and the interpretation procedures are similar. Factors

dictating a cheice depend on areal extent of the application, cloud -
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conditions, resolution requirement, and data system operational costs
per unit area.

The amounts and kinds of ground truth information needed for large
area’yie1d oredictions are constant1y evolving. This is because ground
truth needs.are'interdependent'nith:advances~in-data processing, image.
enhancement and interpretation techniques, qua]ity of crop caTendars,
amount of ancilIary 1nformat1on (soi1 types ra1nfall) availab]e and its
use, the prec151on w1th wh1ch it is known how the plant reacts to envi-
ronmental stresses -- 1. e. s phy51olog1ca1 mean1ngfu1 growth mode]s,
exper1ence, 1nterpretat1on keys and other memory features. The ground
truth needed today may be qu1te d1fferent from that required next year
or 5 years from now, depend1ng on advances Tn other areas.

Ground truth requ1rements are becoming more e]aborate, bot not o
necessarily to improve crop identification or estimate acreage planted. .
Rather, the impetus is to better document soil conditions and plant
canooy characteristics for plant simulation and bidirectional reflectancéA_
models. |

Ground truth can be obtained for domestic situations. It is anothe¥

matter to obtain ground truth for other countries. Johannsen, Baumgardngr,

and Wiegand (unpublished manuscript for 1972 Annual Agronomy Meetings,
Miami, Florida) pointed out that agronomists, geographers, and hydrolo-
gists use their knowledge of the relation between spectral changes and
known changes to obtain specific information about areas where no ground
truth was taken. Thus, the experience of the users is an important_

factor in defining ground truth requirements.

-

The mix of soil background and vegetation information in the spectr

for trops, rangeland, and forest scenes has hampered extraction of the
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vegetation information per se. Criteria have been deveioped for distin-
guishing vegetation from the soil background. It has been shown that thd

LANDSAT data space can be partitioned into zones corresponding to water,

cloud shadow, low—reflecting soil, medium-ref1ecting soil, high-reflecti
soil, clouds, Tow vigor* vegetatior, medium mgor- vegetationr and high \ngE‘
vegetation without any a pgjg[j_knowiedge of specific ground conditions
for a scene. Such interpretations will proiiferate as the universa]ity
of the spectra1 characteristics of water, vegetation 5011 clouds, and
cloud shadows, on which the approach is based, is tested and proved As
the spectral categories for soi] and vegetation are ca11brated against

ground conditions (or as the ground conditions are calibrated against

their spectra?) the need for ground truth may lessen
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CONCLUSION .

A model that simulates the response of plants to the soil and
aerial environment (physielpgical crop weather model) can be used in
combination.with spectral modelsvthat document the integrated plant
respanse ta improve crop yield forecasts for-jarge areas. The
physiological model operates on a daily basis. Modeled dry matter
accumulation each day is apportioned to the appropriate plant organs.
The spectral data provide~feedback to the phy#io]ogica]_mode] in terms
of LAI or:green biomass, and aid considerably in explaining field
variations in stand and cunrent}or previons differences in management

that affect p]ant vigor or so11 product1v1ty.

The hybrid model approach will improve as the influences of weather

and p1ant stress on phas1c development and yield components (seed number

seed size and number of heads per unit land area) are better quant1f1ed
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environment of crops. Agric. Meteorol. 14: 211-225.
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